26 setembro 2015

Dispositivos de Aquecimento Standby para Grupos Geradores - Instalação do Aquecedor na Jaqueta de Água - Note a Válvula de Isolamento do Aquecedor - Tipo e o Percurso da Mangueira - Aquecedores do Líquido de Arrefecimento - Nota sobre o Código Americano - Nota sobre o Código Canadense - Se a área em torno do grupo gerador não for mantido nesta temperatura, deverão ser considerados - Aquecedores de Óleo e de Combustível - Aquecedores Anti-condensação - Nota sobre o Código Americano - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins


Dispositivos de Aquecimento Standby para Grupos Geradores

Partida a Frio e Aceitação de Carga: Uma consideração crítica do projetista do sistema é o tempo que o sistema de energia de emergência ou standby leva para detectar uma falha de energia, dar a partida no grupo gerador e transferir a carga. Algumas normas e padrões para sistemas de energia de emergência estabelecem que o grupo gerador deve ser capaz de alimentar todas as cargas de emergência  em até 10 segundos após a falha de energia. Alguns fabricantes de grupos geradores limitam a classificação do desempenho de partida a frio a uma porcentagem da classificação standby do grupo gerador. Esta prática reconhece que em muitas aplicações, apenas uma parte da carga total conectável é a carga de emergência (as cargas não críticas podem ser conectadas posteriormente), e que é difícil dar a partida e atingir a aceitação de carga total com grupos geradores a diesel.

Os critérios de projeto para partida a frio e aceitação de carga da Cummins Power Generation são que o grupo gerador seja capaz de dar partida e alimentar todas as cargas de emergência até a classificação de standby em até 10 segundos após a falha de energia. Este nível de desempenho presume que o grupo gerador esteja em um local com temperatura ambiente mínima de 4º C (40º F) e que esteja equipado com aquecedores do líquido de arrefecimento. Isto deve ser conseguido instalando-se o grupo gerador em uma sala ou carenagem aquecida.

Carenagens externas, protegidas contra intempéries (inclusive os chamados de “roupa justa”) geralmente não são isoladas, dificultando a manutenção de um grupo gerador aquecido em temperaturas ambiente mais frias.

Abaixo de 4º C (40º F), e até –32º C (–25º F), para a maioria dos grupos geradores Cummins Power Generation é dada a partida mas estes não aceitarão carga em um único passo em até dez segundos. Se um grupo gerador precisar ser instalado em um gabinete não aquecido num local com baixas temperaturas, o projetista deverá consultar o fabricante. O operador é responsável pela monitoração do funcionamento dos aquecedores do líquido de arrefecimento do grupo gerador (a norma NFPA 110 exige um alarme de baixa temperatura do líquido de arrefecimento para esta finalidade) e pela obtenção de um grau ideal do combustível para as condições ambiente.

Os grupos geradores em aplicações de energia de emergência devem partir e alimentar todas as cargas de emergência em até 10 segundos após uma falha de energia.


Para atender tais normas, geralmente são necessários aquecedores do líquido de arrefecimento do motor mesmo em ambientes aquecidos, especialmente para grupos geradores a diesel. A NFPA 110 tem requisitos específicos para os sistemas de Nível 1 (onde uma falha do sistema pode resultar em sérios acidentes ou perdas de vidas):

• Aquecedores do líquido de arrefecimento são necessários a menos que a temperatura ambiente da sala do gerador não seja menor que 21º C (70º F).

• Aquecedores do líquido de arrefecimento são necessários para manter a temperatura do bloco do motor acima de 32º C (90º F) se houver a possibilidade de que a temperatura ambiente da sala do gerador caia até 4º C (40º F), porém nunca abaixo deste valor. O desempenho em temperaturas mais baixa não é definido. (Em temperaturas ambientes mais baixas, o grupo gerador p ode não dar a partida, ou pode não alimentar as cargas tão rapidamente. Além disso, os alarmes de baixa temperatura podem indicar problemas se o aquecedor do líquido de arrefecimento não mantiver a temperatura do bloco num nível alto o suficiente para a partida em 10 segundos.)

• Aquecedores de bateria são necessários se houver a possibilidade de que a temperatura ambiente da sala do gerador caia abaixo de 0º C (32º F).

• É necessário um alarme de baixa temperatura do motor.

• Os aquecedores de líquido de arrefecimento e da bateria devem ser alimentados pela fonte normal de energia.



Aquecedores do Líquido de Arrefecimento: Aquecedores do líquido de arrefecimento controlados termostaticamente são necessários para partidas rápidas e boa aceitação de carga em grupos geradores utilizados em aplicações de emergência ou standby.


Nota sobre o Código Americano: Para os sistemas de energia de emergência Nível 1, a NFPA 110-1999(?) exige que o líquido de arrefecimento do motor seja mantido a uma temperatura mínima de 32ºC (90ºF). A NFPA110 exige também a monitoração de falha do aquecedor na forma de um alarme de baixa temperatura do motor.

É importante entender que os aquecedores de líquido de arrefecimento normalmente são projetados para manter o motor aquecido o suficiente para uma partida rápida e confiável e alimentação da carga, e não para aquecer o ambiente onde se encontra o grupo gerador. Assim, além da operação do aquecedor do líquido de arrefecimento sobre o motor, a temperatura do ar ambiente ao redor do grupo gerador deverá ser mantida a um mínimo de 10º C (40º F).


Nota sobre o Código Canadense: A CSA282-2000 exige que os grupos geradores utilizados em aplicações de emergência sejam sempre instalados de modo que o grupo gerador seja mantido a uma temperatura ambiente mínima de 10º C (40º F).


Se a área em torno do grupo gerador não for mantido nesta temperatura, deverão ser considerados: o uso de combustível de tipo especial ou aquecimento do combustível (para grupos geradores a diesel), aquecedores de alternador, aquecedores de controle e aquecedores de bateria.

Uma falha no aquecedor da jaqueta de água ou uma redução  da temperatura ambiente ao redor do motor não evitará necessariamente a partida do motor, mas afetará o tempo para que o motor parta e quão rapidamente a carga poderá ser conectada ao sistema de geração de energia local.

Funções de alarme de baixa temperatura do motor são geralmente adicionadas aos grupos geradores para alertar os operadores sobre a possibilidade de ocorrência deste problema nos sistemas em funcionamento.

Os aquecedores de jaquetas de água são um item de manutenção e, portanto, é de se esperar que o elemento de aquecimento deva ser substituído algumas vezes durante a vida da instalação. Para substituir o elemento do aquecedor sem a drenagem completa do sistema de arrefecimento do motor, devem ser fornecidas válvulas de isolamento (ou outros meios) do aquecedor.

Os aquecedores de jaqueta de água podem funcionar em temperaturas consideravelmente mais altas do que a temperatura das linhas do líquido de arrefecimento do motor, razão pela qual devem ser usadas mangueiras de silicone de alta qualidade, ou mangueiras trançadas para evitar falha prematura das mangueiras do líquido de arrefecimento associadas com o aquecedor de jaqueta de água. Deve-se tomar cuidado no projeto de instalação do aquecedor do líquido de arrefecimento para se evitar voltas sobre o cabeçote no roteamento da mangueira que possam resultar em bolsões de ar, causando falha de superaquecimento do sistema.

Os aquecedores do líquido de arrefecimento do motor funcionam normalmente quando o grupo gerador não está em operação, razão pela qual os mesmos são conectados à fonte normal de energia. O aquecedor deverá ser desativado sempre que o grupo gerador estiver funcionando.

Isto pode ser feito de várias maneiras, como um interruptor de pressão de óleo, ou pela lógica de controle do grupo gerador.


Aquecedores de Óleo e de Combustível: Para as aplicações onde o grupo gerador será exposto a baixas temperaturas ambientes (menos de –18º C [0º F]), também podem ser necessários aquecedores do óleo lubrificante e das linhas e filtro de combustível para evitar que o combustível se torne pastoso.


Aquecedores Anti-condensação: Para aplicações onde o grupo gerador será exposto a alta umidade ou temperaturas que oscilam em torno do ponto de orvalho, devem ser usados aquecedores para o gerador e uma caixa de controle para evitar a condensação. A condensação na caixa de controle, nos circuitos de controle ou no isolamento dos enrolamentos do gerador pode causar corrosão, deterioração dos circuitos e até mesmo curtos-circuitos e falhas prematuras de isolamento.


Nota sobre o Código Americano: Para os sistemas de energia de emergência Nível 1, a NFPA 110-1999(?) exige que o líquido de arrefecimento do motor seja mantido a uma temperatura mínima de 32ºC (90ºF). A NFPA110 exige também a monitoração de falha do aquecedor na forma de um alarme de baixa temperatura do motor.


Carenagens (Coberturas) - Proteção Contra Intempéries - Acústica - Carenagem com Passarela - Configurações Alternativas de Arrefecimento e Ventilação - Classificações do Sistema de Arrefecimento - Alternativas de Arrefecimento Remoto - Radiador remoto - Trocador de calor - Sistemas de Manutenção do Nível do Óleo Lubrificante - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins



Carenagens (Coberturas)

As carenagens podem ser classificadas em três tipos gerais: carenagens de proteção contra intempéries, acústicas e com passarelas. Os nomes são auto explicativos.


Proteção Contra Intempéries: As carenagens protegem o grupo gerador, tanto contra intempéries quanto contra violação, pois são fornecidas com fechaduras. Defletores ou painéis perfurados incorporados permitem a passagem do fluxo de ar para ventilação e arrefecimento. Pouca ou nenhuma atenuação de ruídos é obtida e às vezes pode haver aumento do nível de ruídos induzidos pela vibração.

Tais tipos de carenagens não retêm calor nem mantêm a temperatura acima da ambiente.

As aplicações NFPA 110 requerem dois ciclos de partida contínua de 45 segundos com um período de descanso entre eles, ou dois ciclos de partida de 15 segundos com 15 segundos de descanso.


Acústica: As carenagens com atenuação sonora são especificadas em função de uma determinada quantidade de atenuação de ruídos ou de uma classificação do nível externo de ruídos. Os níveis de ruído devem ser especificados com base em uma dada distância e para se comparar os níveis de ruído todas as especificações devem ser convertidas na mesma distância básica. A atenuação sonora requer material e espaço, portanto, esteja certo de que as unidades indicadas nos desenhos incluam as informações corretas da carenagem acústica.

Embora alguns destes projetos de carenagens tenham alguma capacidade de isolamento para reter calor, esta não é a intenção do projeto. Se for necessária a manutenção acima da temperatura ambiente, será preciso uma carenagem com passarela.


Carenagem com Passarela: Este termo engloba uma ampla variedade de carenagens que são fabricadas de acordo com as especificações de cada cliente. Geralmente, essas carenagens incluem atenuação sonora, comutação de energia e equipamento de monitoração, pára-raios, sistemas de proteção contra incêndios, tanques de combustível e outros equipamentos. Estes tipos de carenagens são construídas como unidades simples, sem cobertura, e como unidades integradas com grandes portas ou painéis removíveis para acesso de serviços. Estas carenagens podem ser construídas com recursos de isolamento e aquecimento.

Nota: A instalação de carenagens externas (especialmente carenagens acústicas) dentro de edifícios não é uma prática recomendada por duas razões principais. Primeira, as carenagens acústicas usam a capacidade de restrição do excesso de ventilação para reduzir ruídos através de deflexão da ventilação. Conseqüentemente, resta uma pequena ou nenhuma capacidade de restrição para quaisquer dutos de ar, defletores ou outros equipamentos que invariavelmente acrescentarão restrição. Segunda, os sistemas de escape de carenagens externas não são necessariamente sistemas selados, ou seja, possuem abraçadeiras, juntas de encaixe deslizante no lugar de conexões rosqueadas ou flangeadas. Essas conexões com abraçadeiras podem permitir que o gás de escape vaze para a sala. 


Configurações Alternativas de Arrefecimento e Ventilação

Os motores refrigerados a água são arrefecidos pelo bombeamento do líquido de arrefecimento (uma mistura de água e anticongelante) através de passagens no bloco de cilindros e cabeçotes do motor por uma bomba acionada pelo motor. O motor, a bomba e o radiador ou trocador de calor líquido-líquido formam um sistema de arrefecimento fechado e pressurizado. Recomenda-se, sempre que possível, que o grupo gerador inclua este tipo de radiador montado na fábrica para o arrefecimento e ventilação do motor. Esta configuração resulta no sistema de menor custo, melhor confiabilidade e melhor desempenho do conjunto. Além disso, os fabricantes de tais grupos geradores podem testar o protótipo para verificar o desempenho do sistema.


Classificações do Sistema de Arrefecimento: A maioria dos grupos geradores da Cummins Power Generation tem classificações opcionais do sistema de arrefecimento para os modelos com radiador. Geralmente, existem disponíveis sistemas de arrefecimento projetados para operar em temperaturas ambientes de 40ºC e 50ºC. Verifique o desempenho ou disponibilidade de cada unidade nas Folhas de Especificações. As classificações têm uma capacidade máxima de restrição estática associada a elas. Consulte Ventilação na seção Projeto Mecânico para mais detalhes.

Nota: Seja cauteloso ao comparar classificações de sistemas de arrefecimento cuja classificação seja baseada na temperatura ambiente e não na temperatura do ar no radiador.


Uma classificação de temperatura do ar no radiador restringe a temperatura do ar que flui para o radiador e não permite que ela aumente devido à energia térmica irradiada do motor e do alternador. Os sistemas classificados com base na temperatura ambiente levam em conta este aumento de temperatura em sua capacidade de arrefecimento.


Alternativas de Arrefecimento Remoto: Em algumas aplicações, a restrição ao fluxo do ar pode ser muito grande devido ao longo comprimento dos dutos, por exemplo, para que o ventilador de um radiador acionado pelo motor forneça o fluxo de ar necessário para arrefecimento e ventilação.

Em tais aplicações, e onde os ruídos do ventilador são um problema, deve-se considerar uma configuração envolvendo um radiador remoto ou trocador de calor líquido-líquido.

Nestas aplicações, um grande volume do fluxo de ar da ventilação ainda é necessário para remover o calor irradiado pelo motor, gerador, silencioso, tubo de escape e outros equipamentos, para manter a temperatura da sala do gerador em níveis apropriados para o funcionamento correto do sistema.


Radiador Remoto: Uma configuração de radiador remoto requer um cuidadoso projeto do sistema para proporcionar o arrefecimento adequado do motor. Deve-se prestar atenção a detalhes como limitações da coluna de fricção e estática da bomba d’água do motor e para a desaeração, abastecimento e drenagem apropriados do sistema de arrefecimento, bem como a contenção de quaisquer vazamentos de anticongelante.


Trocador de Calor: Um trocador de calor líquido-líquido requer muita atenção no projeto do sistema para que forneça o meio para arrefecer o trocador de calor. Deve-se observar que as normas sobre a conservação de água no local e sobre o meio ambiente talvez não permitam que a água da cidade seja utilizada como meio de arrefecimento e que, em regiões de riscos sísmicos, a água da cidade possa ser interrompida durante um terremoto.

Consulte a seção Projeto Mecânico para informações mais detalhadas sobre as alternativas de arrefecimento.


Sistemas de Manutenção do Nível do Óleo

Lubrificante

Um sistema de manutenção do nível do óleo lubrificante pode ser desejável para aplicações onde o grupo gerador funcione sob condições de energia Prime, ou em aplicações Standby não assistidas com um número de horas de funcionamento maior que o normal. Os sistemas de manutenção do nível do óleo não estendem os intervalos de troca de óleo para o grupo gerador, a menos que uma filtragem especial também seja incorporada ao sistema.


25 setembro 2015

Por favor, depositem qualquer valor para ajudar na manutenção das ferramentas do Blogguer, veja o estado do meu equipamento e quais as ferramentas que ainda uso...


Ao passar por uma Lotérica, faça como eu, doe R$ 5,00.


Banco CEF (CAIXA)  Ag.: 0237
Conta n° 013  00194579-4   
Oswaldo  SP Filho


CLIQUE NO BANNER  AO LADO P/ DOAR --->




Bateria só segura carga por 10 minutos;


Trabalhar entre linhas, tá ficando difícil. A tela está condenada;



O sistema ainda é o XP, obsoleto, mas funciona, por enquanto;


Tome-lhes linhas;



Por incrível que pareça, essa é a Máquina executora das postagens do Bombeiro Oswaldo.
Acredite se quiser!!!





Faça sua doação para que eu possa realizar a manutenção da Máquina e do Sistema...


Antecipadamente Agradeço a atenção dispensada.

Bombeiroswaldo... 

23 setembro 2015

Sistemas de Escape e de Silencioso - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins


Sistemas de Escape e de Silencioso

Dois elementos determinam a escolha dos sistemas de escape e do silencioso: o nível de ruído, evidentemente, e a acomodação do movimento relativo entre o sistema de escape e o grupo gerador.

As regulamentações de controle de ruídos ou as preferências pessoais determinam as escolhas do tipo de silencioso.

As seleção do sistema de escape e do silencioso dependem obviamente do local onde o grupo gerador será instalado:  interno ou externo. Uma carenagem para proteção externa contra intempéries fornecida por um fabricante de grupo gerador geralmente oferece várias opções de silenciosos e normalmente com sua instalação no teto. 

As opções de silenciosos são classificadas como industrial, residencial ou crítica dependendo de sua atenuação. As carenagens acústicas geralmente incluem um sistema de silencioso integrado como parte do pacote acústico completo. Para mais informações sobre ruídos e conhecer níveis de ruído, consulte a seção VI – Projeto Mecânico.

Um elemento-chave do sistema completo de escape é o fato de o grupo gerador vibrar, isto é, movimentar-se com relação à estrutura que o contém. Assim, é necessário instalar uma tubulação flexível de escape na saída de escape do grupo gerador. Os sistemas internos com longos percursos de tubo de escape também requerem tolerância à expansão para evitar danos no sistema de escape e nos coletores de escape ou nos turbocompressores do motor.


Baterias e Carregadores de Bateria - Racks de baterias - Baterias de chumbo-ácido - Baterias de célula inundada - Bateria NiCad - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins


Baterias e Carregadores de Bateria

Talvez o subsistema mais crítico de um grupo gerador seja o sistema da baterias para a partida do motor e controle do grupo gerador. A escolha e a manutenção corretas das baterias e do carregador de bateria são essenciais para a confiabilidade do sistema.

O sistema consiste de baterias, racks de baterias, um carregador de bateria que é acionado pela fonte normal de energia elétrica durante o tempo em que o grupo gerador estiver em espera (standby), e um alternador de carga das baterias acionado por motor que carrega as baterias e fornece a energia CC para o sistema de controle quando o grupo gerador estiver funcionando.

Quando os grupos geradores estão em paralelo, os bancos de baterias de cada grupo gerador geralmente são colocados em paralelo para fornecer a energia de controle para o sistema de paralelismo. O fabricante do sistema de paralelismo deve sempre ser consultado para determinar se o sistema de controle do motor é adequado para a aplicação, uma vez que uma queda de voltagem no banco de baterias poderia interromper alguns sistemas de controle de paralelismo e exigir o uso das baterias em estações separadas para alimentar o equipamento de paralelismo.

As baterias devem estar tão próximas quanto possível do grupo gerador para minimizar a resistência no circuito de partida. A localização deve permitir fácil acesso de serviço às baterias e minimizar sua exposição à água, sujeira e óleo. O gabinete das bateria deve permitir ampla ventilação para que os gases explosivos gerados pela bateria possam ser dissipados. As normas em regiões sísmicas exigem que os racks de bateria tenham recursos especiais para evitar o derramamento e quebra do eletrólito durante um terremoto.

O projetista do sistema deve especificar o tipo do sistema de baterias (geralmente limitado ao tipo chumbo-ácido ou níquel-cádmio, como explicado a seguir), bem como sua capacidade.

A capacidade necessária do sistema da baterias depende do tamanho do motor (cilindrada), das temperaturas  mínimas esperadas do líquido de arrefecimento do motor, do óleo lubrificante e das baterias (veja abaixo Dispositivos de Aquecimento em Standby para Grupos Geradores), a viscosidade do óleo lubrificante e o número necessário e a duração dos ciclos de partida. O fornecedor do grupo gerador deve fazer as recomendações com base nestas informações.

As baterias de chumbo-ácido são o tipo mais comumente escolhido para grupos geradores. Elas são relativamente econômicas e oferecem bom serviço em temperaturas ambientes entre –18º C (0º F) e 38º C (100º F). As baterias de chumbo-ácido podem ser recarregadas por carregadores convencionais, que podem ser montados em paredes próximas ao grupo gerador ou em um comutador de transferência automática (se o grupo gerador NÃO for parte de um sistema de paralelismo). O carregador deve ser dimensionado para recarregar o banco de baterias em aproximadamente 8 horas e ao mesmo tempo atender todas as necessidades de energia de controle do sistema.

Uma bateria de chumbo-ácido pode ser do tipo selada “livre de manutenção” ou do tipo de célula inundada. As baterias livres manutenção suportam melhor as negligências de manutenção porém não são monitoradas e mantidas tão facilmente quanto as baterias de célula inundada.

Todas as baterias de chumbo-ácido devem ser carregadas no local antes de sua utilização inicial. Mesmo as baterias livres de manutenção não retêm a carga indefinidamente.

As baterias de célula inundada requerem a adição de eletrólito no local de uso e atingem cerca de 50% da condição de carga total pouco tempo depois da adição do eletrólito.

Os sistemas de bateria NiCad (níquel-cádmio) são geralmente especificados para locais onde as temperaturas ambientes podem ser extremamente altas ou baixas, visto que seu desempenho é menos afetado por temperaturas extremas do que no caso das baterias de chumbo-ácido.

Os sistemas de bateria NiCad são consideravelmente mais caros do que as baterias de chumbo-ácido, mas eles têm uma vida útil mais longa.

Uma das maiores desvantagens dos sistemas de baterias NiCad é que seu descarte pode ser difícil e caro, uma vez que os materiais que compõem essas baterias são tóxicos.

Além disso, as baterias NiCad requerem carregadores especiais para que atinjam o nível de carga plena. Esses carregadores devem ser fornecidos com filtros para reduzir o “ruído do carregador” o qual pode interromper os sistemas de controle do motor e do gerador.


Disjuntores da Linha Principal - Comutadores de Carcaça Moldada - Caixa de Entrada - Disjuntores Múltiplos - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins


Disjuntores da Linha Principal

Disjuntores do tipo de carcaça moldada e do tipo de circuito de força podem ser utilizados em grupos geradores. Os disjuntores de carcaça moldada geralmente são fornecidos montados diretamente no grupo gerador. Entretanto, muitos disjuntores podem ser montados em um painel separado sobre uma parede ou pedestal. Os tamanhos podem variar de 10 a 2500 ampères e são adequados para a montagem em uma caixa de saída diretamente sobre o grupo gerador.

Os disjuntores de circuito de força podem ser encontrados em tamanhos que variam de 800 a 4.000 ampères ou mais, e são mais rápidos mas consideravelmente mais caros que os disjuntores de carcaça moldada. Os disjuntores de circuito de força geralmente são montados em um painel isolado próximo ao grupo gerador, e não no próprio grupo gerador, devido ao seus tamanhos e susceptibilidade a danos por vibração. Quando são necessários disjuntores da linha principal para um projeto, as especificações do projeto devem incluir o tipo de disjuntor, o tipo de unidade de desarme e a classificação básica (contínua ou não contínua).

Consulte a seção Projeto Elétrico para mais detalhes sobre a escolha de disjuntores.

Comutadores de Carcaça Moldada: Nos casos onde um meio de desconexão é desejado, mas a proteção do gerador ou dos condutores não é necessária (i. é., a proteção é oferecida pelo AmpSentry™, ou é utilizado um gerador autoexcitado), geralmente é usado um comutador com carcaça moldada em vez de um disjuntor. Esses comutadores têm os mesmos contatos e mecanismos de comutação que os disjuntores, porém não detectam o corte de corrente. O comutador também fornece um ponto de conexão e os terminais para a conexão dos condutores da carga.

Caixas de Entrada: Uma caixa de entrada é essencialmente uma caixa de disjuntor sem o disjuntor. Se o disjuntor não for necessário ou desejado, a caixa de entrada terá espaço adicional para a entrada, roteamento e conexão dos condutores.

Disjuntores Múltiplos: Geralmente, são necessários vários disjuntores e os mesmos são fornecidos pela fabrica para a maioria dos grupos geradores. As opções padrão disponíveis são dois disjuntores montados (exceto no maior alternador). Em certos alternadores e grupos geradores isto simplesmente não é prático ou não existe um local para a montagem das caixas dos disjuntores. Consulte o representante do fabricante sobre a disponibilidade de equipamentos específicos. Podem ser considerados pedidos especiais para a montagem de três ou mais disjuntores em alguns grupos geradores, mas isto normalmente requer o uso de um painel de distribuição montado em uma parede ou isolado.


22 setembro 2015

Acessórios e Opções - Recursos de Segurança e Alertas de Controle - Controle PowerCommand - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins


Acessórios e Opções

Recursos de Segurança e Alertas de Controle

Os sistemas de controle e monitoração baseados em relés existentes em muitos grupos geradores podem incluir vários avisos e alarmes de desligamento para a proteção do motor/gerador. Equipamentos opcionais são geralmente necessários para a monitoração plena ou alertas remotos, bem como medição de CA do grupo gerador. Se a função de comunicação em rede for desejada, serão necessários equipamentos adicionais, embora estes tenham capacidade limitada. Com o advento dos complexos requisitos eletrônicos de controle do motor e do alternador, além dos elevados níveis de dados de diagnóstico e serviços, os sistemas podem funcionar mesmo com as limitações de capacidade desses tipos de sistemas de controle.

Os sistemas eletrônicos de controle e monitoração, que geralmente são equipamentos padrão em muitos grupos geradores, incluem um menu completo de avisos e alarmes de desligamento integrados para proteger o equipamento motor/gerador e acionar esses alarmes. Alguns destes alarmes podem ser selecionados ou programados pelo cliente. Todos os alarmes podem ser exibidos no painel de controle ou em um local remoto. O envio de avisos remotos é feito de várias maneiras:

1. Saídas de contatos de relés para alarmes comuns ou individuais.

2. Painéis de avisos especialmente projetados para o sistema de controle, acionados por vários tipos de interfaces de rede.

3. Comunicações através de Redes Locais ou conexões via modem para locais de monitoração remota utilizando softwares baseados em PCs.


As normas podem exigir diferentes níveis de alarmes para diferentes tipos de aplicações. As normas de segurança à vida (Nível 1 da NFPA 110 nos EUA) ou todas as outras normas de emergência/standby (Nível 2 da NFPA 110 nos EUA), ou equivalentes, especificam os recursos mínimos de alarme necessários para essas aplicações. Outras normas também podem ter requisitos específicos. Consulte as normas individuais em vigor para obter os requisitos de alarme.

O Controle PowerCommand™ da Cummins Power Generation é projetado para atender ou exceder estes tipos de requisitos e vários outros padrões. (Consulte a Folha de Especificações do Controle PowerCommand™ para obter detalhes.)


Controles Baseados em Relés - Painel de Interface do Controle a Dois Fios - Painel de Interface do Controle Detector 12 Baseados em Circuitos Eletrônicos (Microprocessador) - Sistema PowerCommand com Microprocessador - Power Command Eletrônico com Plena Autoridade - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins


Controles Baseados em Relés

Até há alguns anos, os sistemas de controle baseados em relés eram comuns em quase todos os grupos geradores.

Eles podem ser projetados para fornecer partida manual ou totalmente automática, além das funções básicas de proteção do gerador e incluir os equipamentos necessários para atender às normas locais para grupos geradores.

Os sistemas baseados em relés (veja a Figura 4-17) controlam a partida e as funções operacionais do motor, as funções de monitoração de falhas ou desempenho fora das especificações do motor e do alternador e fornecem indicadores, medições e alertas para a interface do usuário.

Funções como o controle de voltagem do alternador são executadas por uma placa de circuito AVR separada.

Analogamente, um circuito controlador separado opera o governador eletrônico e outros equipamentos opcionais.

Existem vários recursos opcionais disponíveis para melhorar o desempenho/controle e aumentar a funcionalidade de tarefas especiais como a interface do equipamento de paralelismo e funções adicionais de monitoração de equipamentos, como tanques de combustível, líquido de arrefecimento ou baterias.



Alguns grupos geradores são equipados com sistemas híbridos de controle (veja a Figura 4-18) que empregam relés e circuitos integrados. Tais controles oferecem maior funcionalidade do que os sistemas puros baseados em relés, mas ainda são limitados em sua capacidade de oferecer controles complexos ou interfaces avançadas de operação.



As demandas atuais de alto nível de desempenho, melhor funcionalidade, controle de sistemas sofisticados e interfaces de rede requerem as capacidades dos sistemas de controle baseados em microprocessadores. A era dos microprocessadores e computadores tem permitido o desenvolvimento de controles eletrônicos totalmente integrados e baseados em microprocessadores, como a série de controles PowerCommand™ (veja a Figura 4-19) da Cummins Power Generation. O sistema PowerCommandintegra o funcionamento do motor, o controle do alternador e as funções de monitoração de um controle totalmente equipado com base em relés, além do governo eletrônico e regulagem de voltagem e muitos outros recursos e funções adicionais. A monitoração plena das características elétricas da saída, kW, kVA, kVAR, voltagem alta e baixa, realimentação, etc., permite o controle total do sistema de geração de energia.



Circuitos Eletrônicos com “Autoridade Plena”

Os projetos de motores avançados incorporam sistemas sofisticados de fornecimento de combustível, de ignição ou de controle do ponto de injeção, e a monitoração ativa do desempenho e ajustes. Estes sistemas e funções são necessários para se obter eficiência de combustível e baixas emissões de escape. Os motores com “autoridade plena”, como são geralmente chamados, requerem sistemas com microprocessadores igualmente sofisticados para operar e controlar estas funções. Uma versão mais avançada do Controle PowerCommand™ incorpora capacidade dinâmica de controle do motor com os recursos e a funcionalidade a versão mencionada anteriormente, além de muitos outros recursos (veja a Figura 4-20). Em grupos geradores com motores eletrônicos com “autoridade plena”, este tipo de sistema avançado de controle é parte integral da unidade motor-gerador e não há opção para sistemas baseados em relés ou outros sistemas de controle.



Opções de Controle

Os equipamentos opcionais para os sistemas eletrônicos de controle incluem todas as funções necessárias para o controle e monitoração do paralelismo de vários grupos geradores, entre si e com a rede da concessionária.

Existem também controles intermediários de paralelismo que podem ser atualizados.

A função de interface de rede disponível para tais controles pode ser um recurso importante a ser considerado como equipamento opcional. A função de rede permite a monitoração e controle remotos do grupo gerador, bem como a integração com o edifício e sistema automatizados de geração de energia.

Existem também disponíveis pacotes opcionais de relés para o controle de equipamentos periféricos.


Arranjo típico de tubulação para um Motor de partida a Ar - Partida com Ar Comprimido - Nota - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins



Partida com Ar Comprimido: Os sistemas de partida do motor com ar comprimido estão disponíveis para alguns grupos geradores maiores. A partida a ar pode ser indicada para algumas aplicações de energia Prime desde que o ar comprimido esteja prontamente disponível. A Figura 4-16 mostra um arranjo típico de tubulação para um sistema de motor de partida a ar. Considere os itens abaixo para determinar os equipamentos necessários para a instalação de um sistema de partida a ar:

• O fabricante do motor deverá ser consultado quanto à recomendações relativas à bitola da mangueira de ar e o volume mínimo exigido do tanque para cada segundo de partida. O tamanho do tanque dependerá do tempo mínimo de partida necessário. Todos os motores de partida fornecidos pela Cummins Power Generation têm uma classificação máxima de pressão de 1035 kPa (150 psig).

• Os tanques de ar (receptores) devem ser equipados com uma válvula de dreno do tipo roscada (outros tipos não são recomendados por serem uma fonte comum de vazamentos de ar). A umidade pode danificar os componentes do motor de partida.

• Todas as válvulas e acessórios do sistema devem ser projetados para a partida a ar de motores diesel.

• As conexões de tubos devem ser do tipo de vedação seca e devem ser feitas com selador de rosca. Não é recomendo uso de fita Teflon pois ela não fixa as roscas adequadamente e é uma fonte de resíduos que podem obstruir as válvulas.

Nota: As baterias, embora de capacidade muito menor, ainda serão necessárias para o controle do motor e para a monitoração dos sistemas quando for utilizada a partida a ar.


Motores - Governadores - Governadores Mecânicos - Governadores Eletrônicos - Solenóides - Sistemas de partida de motores - Corrente necessária para a carga da bateria - Distribuição das Baterias de Partida - Exemplo de Cálculo - Tabela resistências dos Cabos AWG (bitola americana de cabos) - Manual de Aplicação - Grupos Geradores Arrefecidos a Água T-030d-07 08/03 - Cummins


Motores

Governadores


Governadores Mecânicos: Os governadores mecânicos, como o nome sugere, controlam o fornecimento de combustível ao motor com base na detecção mecânica da rotação do motor através de contrapesos ou mecanismos similares. Estes sistemas apresentam aproximadamente 3 a 5% de corte de rotação entre uma condição sem carga e com carga plena inerente no projeto. Este tipo de sistema geralmente é o mais barato e adequado para aplicações onde o corte de freqüência não é um problema para as cargas sendo alimentadas. Alguns grupos geradores são fornecidos com o governador mecânico opcional.


Governadores Eletrônicos: Os governadores eletrônicos são usados em aplicações onde é exigido o governo isócrono (queda zero) ou onde são especificados equipamentos de sincronização ativa e paralelismo. A RPM do motor normalmente é detectada por um sensor eletromagnético e o fornecimento de combustível para o motor é controlado por solenóides acionados por circuitos eletrônicos. Estes circuitos, sejam controladores auto-contidos ou parte do microprocessador controlador do grupo gerador, utilizam algoritmos sofisticados para manter o controle preciso da rotação (e conseqüentemente da freqüência). Com os governadores eletrônicos, a retomada de passos de carga transiente dos grupos geradores é mais rápida do que com os governadores mecânicos. Os governadores eletrônicos devem sempre ser utilizados quando as cargas incluírem equipamento UPS.

Motores modernos, especialmente motores diesel com sistemas eletrônicos de injeção de combustível, são os únicos disponíveis com sistemas eletrônicos de governo.

Os requisitos de demanda ou regulagem para atingir o aumento da eficiência do combustível, baixas emissões de escape e outras vantagens requerem o controle preciso oferecido por estes sistemas.


Sistemas de Partida de Motores

Partida com Bateria: Os sistemas de partida com bateria de grupos geradores geralmente usam 12 ou 24 volts. Em geral, os grupos menores utilizam sistemas de 12 volts e as máquinas maiores usam sistemas de 24 volts. A Figura 4-14 ilustra as conexões típicas da bateria com o motor de partida. Considere o seguinte ao escolher ou dimensionar as baterias e os equipamentos relacionados:

• As baterias devem ter capacidade suficiente (APF, Ampères de Partida a Frio) para fornecer a corrente para o giro do motor, indicada na Folha de Especificações do grupo gerador recomendado. As baterias podem ser tanto de chumbo-ácido quanto de níquel-cádmio. As mesmas devem ter sido projetadas para este uso e ter sido aprovadas pelas autoridades locais.

• Um alternador acionado por motor com regulador de voltagem automático integrado é fornecido normalmente para recarregar as baterias durante o funcionamento.

• Para a maioria dos sistemas de energia através de grupos geradores, um carregador de bateria, tipo líquida, alimentado pela fonte normal de energia, é desejável ou exigido para manter as baterias plenamente carregadas quando o grupo gerador não estiver funcionando. Os carregadores de bateria líquida são exigidos para sistemas standby de emergência.

• As normas geralmente especificam um tempo máximo de carga da bateria. A seguinte regra prática pode ser utilizada para dimensionar os carregadores de baterias auxiliares:



• As normas locais podem exigir aquecedores para manter uma temperatura mínima da bateria de 10º C (50º F) se o grupo gerador estiver sujeito a temperaturas ambiente de congelamento. Consulte informações complementares em Acessórios e Opções (nesta seção), Dispositivos de Aquecimento Standby para Grupos geradores.

• Os grupos geradores normalmente incluem cabos de bateria e bandejas para bateria são disponíveis.


Distribuição das Baterias de Partida: Se as baterias forem montadas a uma distância do motor de partida maior que o comprimento normal dos cabos, estes deverão ser projetados de acordo com essa distância. A resistência total dos cabos mais as conexões não deverá resultar em uma queda excessiva de voltagem entre a bateria e o motor de partida. As recomendações para o motor são que a resistência total do circuito de partida mais a dos cabos e conexões não exceda 0,00075 ohms para sistemas de 12 volts e 0,002 ohms para sistemas de 24 volts. Veja o seguinte exemplo de cálculo.



Exemplo de Cálculo: Um grupo gerador possui um sistema de partida de 24 VCC, alimentado por duas baterias de 12 volts em série (Figura 4-14). O comprimento total dos cabos é de 375 polegadas (9,52 m), incluindo o cabo entre as baterias. Existem seis conexões de cabos. Calcule a bitola dos cabos necessários como segue:

1. Assuma uma resistência de 0,0002 ohms para o contato do solenóide do motor de partida (RCONTATO).

2. Assuma uma resistência de 0,00001 ohms para cada conexão de cabo (RCONEXÃO), num total de seis.

3. Com base na fórmula que:

• Resistência Máxima Permitida do Cabo = 0,002 - RCONEXÃO – RCONTATO = 0,002 – 0,0002 - (6 x 0,00001)
= 0,00174 ohms

4. Veja a Figura 4-15 para as resistências dos cabos AWG (Bitola Americana de Cabos). Neste exemplo, como mostram as linhas pontilhadas, a menor bitola de cabo que pode ser utilizada é 2 cabos No. 1/0 AWG em paralelo.





21 setembro 2015

D.PEDRO I (D.Pedro de Alcântara Francisco Antônio João Carlos Xavier de Paula Miguel Rafael Joaquim José Gonzaga Pascoal Cipriano Serafim de Bragança e Bourbon) 1798 - 1834


D.PEDRO I



(D.Pedro de Alcântara Francisco Antônio João Carlos Xavier de Paula Miguel Rafael Joaquim José Gonzaga Pascoal Cipriano Serafim de Bragança e Bourbon) 1798 -  1834 

O imperador D. Pedro I, do Brasil, nasceu no Paço da Real Quinta de Queluz em 12 de outubro de 1798 e faleceu no mesmo local em 24 de setembro de 1834; era filho de D. João VI, de Portugal, e de D. Carlota Joaquina de Bourbon. Desde muito cedo teve esmerada educação, adquirindo noções de História Natural, Música, Pintura e Escultura. Casou-se com a Arquiduquesa da Áustria, D. Maria Leopoldina Josefa Carolina de Habsburgo Lorena. Príncipe Regente do Reino do Brasil em 1821, defrontou-se com sérios problemas, pela incompreensão entre facções contrárias: a dos portugueses, que não o reconheciam como Príncipe-Regente, e a dos brasileiros, que almejavam a independência do país. Empreendendo diversas reformas básicas, acirrou os ânimos entre portugueses e brasileiros. Convocado a retornar à Europa, para continuar sua educação, elegendo conseqüentemente uma Junta Provisória, desobedeceu à ordem, aqui permaneceu, no histórico episódio  do  "Fico". No dia 1º de agosto, assina um manifesto aos brasileiros, onde evidencia concretamente seu desejo de independência do país e promulga no mesmo dia um decreto que proíbe o desembarque de tropas portuguesas em território brasileiro. Em São Paulo é recebido com grandes  aclamações, e no dia 5 de setembro, vai  a Santos onde fica até o dia 6 e em seguida retorna a São Paulo. Às margens do riacho Ipiranga recebe comunicação de sua destituição da Regência, por emissários de José Bonifácio e D. Leopoldina. Declarou então rompidas as relações entre Brasil e Portugal e, retirando do chapéu as cores constitucionais portuguesas, atirando-as fora e dizendo: "É preciso acabar com isto", depois de criticar o regime, completou: "Querem mesmo é escravizar o Brasil". Então, sob os vivas à Independência e ao Príncipe, bradou a decantada frase: "Independência ou  morte!" Quando completava 24 anos de idade foi aclamado Imperador constitucional e Defensor Perpétuo do Brasil,aos 12 de outubro de 1822. Seus restos mortais foram trasladados em 1972 para São Paulo, por ocasião dos festejos do sesquicentenário da Independência. Obs.: Ver capítulo "História do Brasil".

D. PEDRO II (D. Pedro de Alcântara João Carlos Leopoldo Salvador Bibiano Francisco Xavier de Paula Leocádio Miguel Gabriel Rafael Gonzaga) 1825 - 1891


D. PEDRO II


(D. Pedro de Alcântara João Carlos Leopoldo Salvador Bibiano Francisco Xavier de Paula Leocádio Miguel Gabriel Rafael Gonzaga)
1825 - 1891


Príncipe imperial, foi em 1831 aclamado segundo imperador do Brasil. Nasceu em São Cristóvão, em 2 de dezembro de 1825 e faleceu em Paris, em 5 de dezembro de 1891. Filho de D. Pedro I e D. Maria Leopoldina, foi herdeiro do trono do Brasil desde o nascimento. Tinha cinco anos de idade quando da abdicação paterna e não pôde desde logo assumir a chefia do Poder Moderador. Apesar de tudo, sob a tutoria de José bonifácio de Andrada e Silva, foi imediatamente aclamado imperador. Sua formação propriamente dita ficou a cargo, no início de sua vida, de José Bonifácio. Falando para o Senado e Câmara Federal disse: "Juro manter a religião católica apostólica romana, a integridade e a indivisibilidade do Império, observar e fazer observar a Constituição política da nação brasileira e mais leis do Império e prover ao bem geral do Brasil, quanto em mim couber". Foi coroado em 1841 e dois anos depois casou-se com D. Teresa Cristina, da qual teve quatro filhos: D. Afonso, Da. Isabel, Da. Leopoldina e D. Pedro Afonso. Durante quase 50 anos de governo, manteve absoluta integridade, colocando o interesse nacional acima das discussões políticas. Sempre foi resoluto nas suas atitudes e, e, 1872, com a mesma imparcialidade, seu traço característico, mandou prender e processar D. Vital e D. Macedo Costa, nas Questões dos Bispos de Olinda e Pará.  De 1864 a 1870, D. Pedro II defrontou-se com dois problemas graves, a guerra contra o governo de Aguirre e aquela contra o Paraguai, que durou cinco anos. Em 1871 a princesa Isabel assinava a Lei do Ventre Livre e em 1885 o próprio Imperador concedeu liberdade aos escravos sexagenários. Favoreceu em todo sentido a campanha da libertação dos escravos, que terminou com a assinatura da Lei Áurea aos 13 de maio de 1888, pela Princesa Isabel. Com a vinda do regime republicano, foi convidado a retirar-se do país, o que de fato fez, declinando de pensão de 5.000 contos de réis que lhe oferecia o Governo Provisório para radicar-se no estrangeiro. Morreu em Paris, dois anos depois do falecimento de Da. Teresa Cristina. Brasil".